Sodium channel mutations in epilepsy and other neurological disorders.

نویسندگان

  • Miriam H Meisler
  • Jennifer A Kearney
چکیده

Since the first mutations of the neuronal sodium channel SCN1A were identified 5 years ago, more than 150 mutations have been described in patients with epilepsy. Many are sporadic mutations and cause loss of function, which demonstrates haploinsufficiency of SCN1A. Mutations resulting in persistent sodium current are also common. Coding variants of SCN2A, SCN8A, and SCN9A have also been identified in patients with seizures, ataxia, and sensitivity to pain, respectively. The rapid pace of discoveries suggests that sodium channel mutations are significant factors in the etiology of neurological disease and may contribute to psychiatric disorders as well.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Idiopathic Generalized Epilepsy and Hypokalemic Periodic Paralysis in a Family of South Indian Descent

Inherited channelopathies are a heterogeneous group of disorders resulting from dysfunction of ion channels in cellular membranes. They may manifest as diseases affecting skeletal muscle contraction, the conduction system of the heart, nervous system function, and vision syndromes. We describe a family of South Indian descent with hypokalemic periodic paralysis in which four members also have i...

متن کامل

Inherited neuronal ion channelopathies: new windows on complex neurological diseases.

Studies of genetic forms of epilepsy, chronic pain, and migraine caused by mutations in ion channels have given crucial insights into molecular mechanisms, pathogenesis, and therapeutic approaches to complex neurological disorders. Gain-of-function missense mutations in the brain type-I sodium channel Na(V)1.1 are a primary cause of generalized epilepsy with febrile seizures plus. Loss-of-funct...

متن کامل

Drosophila sodium channel mutations: Contributions to seizure-susceptibility.

This paper reviews Drosophila voltage-gated Na(+) channel mutations encoded by the para (paralytic) gene and their contributions to seizure disorders in the fly. Numerous mutations cause seizure-sensitivity, for example, para(bss1), with phenotypes that resemble human intractable epilepsy in some aspects. Seizure phenotypes are also seen with human GEFS+ spectrum mutations that have been knocke...

متن کامل

Molecular Basis of an Inherited Epilepsy

Epilepsy is a common neurological condition that reflects neuronal hyperexcitability arising from largely unknown cellular and molecular mechanisms. In generalized epilepsy with febrile seizures plus, an autosomal dominant epilepsy syndrome, mutations in three genes coding for voltage-gated sodium channel alpha or beta1 subunits (SCN1A, SCN2A, SCN1B) and one GABA receptor subunit gene (GABRG2) ...

متن کامل

Ion channels and epilepsy.

Ion channels provide the basis for the regulation of excitability in the central nervous system and in other excitable tissues such as skeletal and heart muscle. Consequently, mutations in ion channel encoding genes are found in a variety of inherited diseases associated with hyper- or hypoexcitability of the affected tissue, the so-called 'channelopathies.' An increasing number of epileptic sy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 115 8  شماره 

صفحات  -

تاریخ انتشار 2005